
ME 326 - Collaborative Robotics - Group Project
Website: https://sites.google.com/view/me-326-collabrobotics-group3?usp=sharing

Group 3
Hanvit Cho

Louis Conreux
Shalika Neelaveni

Tom Soulaire

I.​ Contributions

Here is a breakdown of the contributions of each member:

-​ Hanvit: Focused on the manipulation node, ensuring smooth integration with the
navigation node; Refined object coordinate extraction from the perception system and
fine-tuned manipulator control for precise object handling.

-​ Louis: Developed the vision node, enabling object detection from camera images;
Implemented the color detection module to identify objects based on color features

-​ Shalika: Led the navigation node development, ensuring the robot could successfully
move to the target object; worked on integrating the perception system with navigation to
improve localization accuracy.

-​ Tom: Developed the speech node and the task manager, enabling voice command
processing; handled pixel-to-coordinate transformation for accurate object localization.

II.​ Code architecture

The code for this project can be found on Github:
https://github.com/LouConreux/ME326_Project
We chose to implement a brain-like architecture to be able to handle all of the required tasks
with the same code structure. Each node is linked to a unique task manager responsible for the
proper execution of the sequence of actions. The user would then have to launch a single
python launcher before starting the interaction with the robot.

https://sites.google.com/view/me-326-collabrobotics-group3?usp=sharing
https://github.com/LouConreux/ME326_Project

1.​ Task manager

The task manager node acts as the brain of our system, by integrating all inputs and outputs
from the nodes. It decomposes high-level user instructions into a sequence of primitive actions
and activates the corresponding nodes accordingly. For example, the command “fetch the
banana” would be decomposed into four primitive actions: find (camera node), navigate
(navigation node), pick (manipulation node), return (navigation node).
By maintaining a task queue and updating the current state of the robot, the task manager
allows us to make sure information is processed in the correct order and that there is no conflict
between the nodes.

2.​ Speech

The speech node transforms an audio user input into a JSON instruction file. It utilizes the
Google Cloud Speech-To-Text API to transcribe the recorded audio file into text. This transcript
is then parsed into a dictionary with four entries: task type, object, color and destination.
Equivalency classes have been implemented to understand most commands from the user. For
example, the retrieval task will be selected for any of the following verbs: "Retrieve", "Find",
"Bring", "Fetch","Take".
Another solution could have been to use Gemini directly to parse the user audio input. For the
sake of time, we chose to keep a hard-coded version of the parser.

3.​ Vision
The vision node utilizes the Google Cloud Vision API to interpret commands based on speech
input. It processes two types of recognition tasks:

●​ Object-Based Recognition (when an object is specified):
●​ Detects all objects in the RGB image.
●​ If an object's class matches the requested object, it computes the coordinates

using depth information and a pinhole camera model.
●​ Color-Based Recognition (when a color is specified):

●​ Identifies all objects in the RGB image and classifies their colors using Otsu’s
method for masking and HSV color space conversion.

●​ If an object matches the requested color, it selects the first detected object of that
color.

●​ The system then runs the object-based recognition process.

Finally, the computed coordinates are transformed into the arm’s reference frame and published
for navigation and manipulation.

4.​ Navigation
The navigation node gets a target object’s position from the task manager. It calculates a
proportional control input based on the positional error and generates velocity commands
accordingly.
To ensure smooth movement, the robot’s linear velocity is limited at 0.2 m/s, while its angular
velocity is limited to 0.2 rad/s. The Locobot stops when it reaches within 0.2 meters of the target
pose, positioning itself to face the object for efficient manipulation.

5.​ Manipulation
The manipulation node activates once the navigation node signals that the robot has reached its
goal. It receives the target object's position, which is transferred from the camera to the arm
base for final adjustments.
To ensure a precise grip, the manipulator moves directly above the object, slowly lowers toward
it, and securely grasps it. Additionally, fine-tuning of the end-effector's pitch and roll is necessary
to optimize the grasping action. Once the task is successfully completed, the node returns a
Boolean value to indicate its completion.

III.​ Key algorithms

All the source code used to perform the different tasks can be found on the GitHub more
precisely in:
ros/collab_ws/src/collaborative_robotics_course/locobot_autonomy/locobot_autonomy

1.​ Task manager
The task manager node source code is in task_queue_manager.py. This python file is
responsible for activating the downstream nodes required by the identified task_type in the
parsed audio command, and in the right order. So far, everything is hard-coded so that either
Task 1 is launched when task_type == ‘retrieval’, Task 2 is launched if task_type == ‘sequential’,
and Task 3 is launched if task_type == ‘sort objects’. The task manager works for Task 1 and
Task 2 but we did not have time to implement Task 3 with the task manager.

2.​ Speech
The speech node source code is in speech.py and the audio parsing code is inside audio/.
To do the audio transcription, we are using Google Cloud Speech to Text API
speech_v1p1beta1. We then parse the audio transcription result to give a general command
understandable by the task manager. The parsing is hard-coded but a synonym equivalence
class has been implemented to ensure a wide range of audio commands can be understood by
the task manager (see details in audio/speech_transcriber.py).

3.​ Vision
The vision node source code is in perception.py and the vision detection code is inside
vision/. To identify objects in an image, we are using Google Cloud Vision API vision. We
use the bounding boxes provided by the vision result to retrieve the pixel coordinates of the
desired object. For the color version, we also use the bounding boxes provided by the vision
result, but refine them by using Otsu thresholding method to quickly find a mask of the identified
object to compute its HSV color. We then map a color string to ranges of HSV values. The
identified HSV color is then compared to those ranges to retrieve the color string. If it
corresponds to the desired color, we return the object name provided by the vision result.

In computer vision and image processing, Otsu's method, named after Nobuyuki Otsu (大津展
之, Ōtsu Nobuyuki), is used to perform automatic image thresholding. In the simplest form, the
algorithm returns a single intensity threshold that clusters pixels into two classes, foreground
and background.
The threshold is found by maximizing the intra-class variance defined as the weighted sum of
variances of the foreground class and background class:
If t is the threshold used,

 σ(𝑡)² = ω
𝑓
(𝑡)σ

𝑓
²(𝑡) + ω

𝑏
(𝑡)σ

𝑏
²(𝑡)

where
: Frequency of pixel intensity above threshold t ω

𝑓
(𝑡)

: Frequency of pixel intensity below threshold t ω
𝑏
(𝑡)

4.​ Navigation

The navigation node source code is in navigation.py. The robot’s motion is regulated by a
feedback control system that continuously computes the error between its current position
(obtained from odometry data) and the desired goal pose (published by the vision node) with a
0.2 m clearance for manipulation. The proportional control term (Kp) adjusts the robot’s velocity
based on the magnitude of the position error, ensuring rapid convergence to the target.
Although we explored using an integral and derivative term, we found that just using a
proportional controller performed best. The algorithm also employs coordinate transformations
using rotation matrices to account for the robot’s orientation when computing motion commands.
By utilizing a non-holonomic control matrix, the system maps the desired movement of a
reference point on the robot to linear and angular velocity that comply with the constraints of the
differential drive mechanism. The final velocity commands are then constrained by predefined
limits to ensure safe and smooth movement – in this case we ensured the linear and angular
velocities did not go beyond 0.2 m/s and 0.2 rad/s, respectively. When the computed error falls
below a predefined threshold, the robot stops, and a boolean signal is published to indicate that
the target has been reached.

5.​ Manipulation
The manipulation node source code is in manipulation.py. The manipulation algorithm
implemented in this script coordinates robotic arm movements for object grasping and
placement, using a combination of object pose detection and predefined end-effector motions.

The system listens for a detected object’s pose and waits for a signal indicating that the robot's
base has reached its goal before initiating grasping actions. Once the target pose is received,
the algorithm executes a sequence of movements through the ArmWrapperNode, which
controls the robot's gripper and arm. The gripper initially releases to ensure it is open before
approaching the object. The arm is then guided to an intermediate position slightly above the
object, followed by a descent to grasp it. The grasping is executed by closing the gripper, after
which the object is lifted to a safe height and moved to a drop location also determined by the
vision node. The arm subsequently returns to a resting position. The motion planning is based
on inverse kinematics, ensuring smooth and accurate positioning. Additionally, predefined
offsets in x, y, and z directions help to avoid collisions and account for slight inaccuracies while
executing pick-and-place tasks.

